当前位置:首页 > 教学文档 > 教学计划

高一数学教学计划

时间:2024-01-29 15:37:14
高一数学教学计划(15篇)

高一数学教学计划(15篇)

人生天地之间,若白驹过隙,忽然而已,我们的工作又进入新的阶段,为了今后更好的工作发展,来为今后的学习制定一份计划。相信许多人会觉得计划很难写?下面是小编为大家收集的高一数学教学计划,欢迎大家分享。

高一数学教学计划1

教学目标

1通过对幂函数概念的学习以及对幂函数图象和性质的归纳与概括,让学生体验数学概念的形成过程,培养学生的抽象概括能力。

2使学生理解并掌握幂函数的图象与性质,并能初步运用所学知识解决有关问题,培养学生的灵活思维能力。

3培养学生观察、分析、归纳能力。了解类比法在研究问题中的作用。

教学重点、难点

重点:幂函数的性质及运用

难点:幂函数图象和性质的发现过程

教学方法:问题探究法 教具:多媒体

教学过程

一、创设情景,引入新课

问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?

(总结:根据函数的定义可知,这里p是w的函数)

问题2:如果正方形的边长为a,那么正方形的面积 ,这里S是a的函数。 问题3:如果正方体的边长为a,那么正方体的体积 ,这里V是a的函数。 问题4:如果正方形场地面积为S,那么正方形的边长 ,这里a是S的函数 问题5:如果某人 s内骑车行进了 km,那么他骑车的速度 ,这里v是t的函数。

以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量) 这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)

二、新课讲解

由学生讨论,(教师可提示p=w可看成p=w1)总结,即可得出:p=w, s=a2, a=s , v=t-1都是自变量的若干次幂的形式。

教师指出:我们把这样的都是自变量的若干次幂的形式的函数称为幂函数。

幂函数的定义:一般地,我们把形如 的函数称为幂函数(power function),其中 是自变量, 是常数。 1幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念) 结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式看有如下区别: 对幂函数来说,底数是自变量,指数是常数 对指数函数来说,指数是自变量,底数是常数 例1判别下列函数中有几个幂函数?

① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由学生独立思考、回答)

2幂函数具有哪些性质?研究函数应该是哪些方面的内容。前面指数函数、对数函数研究了哪些内容?

(学生讨论,教师引导。学生回答。)

3幂函数的定义域是否与对数函数、指数函数一样,具有相同的定义域?

(学生小组讨论,得到结论。引导学生举例研究。结论:幂指数 不同,定义域并不完全相同,应区别对待。)教师指出:幂函数y=xn中,当n=0时,其表达式y=x0=1;定义域为(-∞,0)U(0,+∞),特别强调,当x为任何非零实数时,函数的值均为1,图象是从点(0,1)出发,平行于x轴的两条射线,但点(0,1)要除外。)

例2写出下列函数的定义域,并指出它们的奇偶性:①y=x ②y= ③y=x ④y=x

(学生解答,并归纳解决办法。引导学生与指数函数、对数函数对照比较。引导学生具体问题具体分析,并作简单归纳:分数指数应化成根式,负指数写成正数指数再写出定义域。幂函数的奇偶性也应具体分析。)

4上述函数①y=x ②y= ③y=x ④y=x 的单调性如何?如何判断?

(学生思考,引导作图可得。并加上y=x 和y=x-1图象)接下来, 在同一坐标系中学生作图,教师巡视。将学生作图用实物投影仪演示,指出优点和错误之处。教师利用几何画板演示。见后附图1

让学生观察图象,看单调性、以及还有哪些共同点?(学生思考,回答。教师注意学生叙述的严密性。)

教师总评:幂函数的性质

(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1),

(2)如果a>0,则幂函数的图象通过原点,并在区间[0,+∞)上是增函数,

(3)如果a<0,则幂函数在(0,+∞)上是减函数,在第一区间内,当x从右边趋向于原点时,图象在y轴右方无限地趋近y轴;当x趋向于+∞,图象在x轴上方无限地趋近x轴。

5通过观察例1,在幂函数y=xa中,当a是(1)正偶数、(2)正奇数时,这一类函数有哪种性质?

学生思考,教师讲评:(1)在幂函数y=xa中,当a是正偶数时,函数都是偶函数,在第一象限内是增函数。(2)在幂函数y=xa中,当a是正奇数时,函数都是奇函数,在第一象限内是增函数。

例3巩固练习 写出下列函数的定义域,并指出它们的奇偶性和单调性:①y=x ②y=x ③y=x 。

例4简单应用1:比较下列各组中两个值的大小,并说明理由:

①0.75 ,0.76 ;

②(-0.95) ,(-0.96) ;

③0.23 ,0.24 ;

④0.31 ,0.31

例5简单应用2:幂函数y=(m -3m-3)x 在区间 上是减函数,求m的值。

例6简单应用2:

已知(a+1)

课堂小结

今天的学习内容和方法有哪些?你有哪些收获和经验?

1、 幂函数的概念及其指数函数表达式的区别 2、 常见幂函数的图象和幂函数的性质。

布置作业:

课本p.73 2、3、4、思考5

高一数学教学计划2

一、学生在数学学习上存在的主要问题

我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面:

1、进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。

2、被动学习。许多同学进入高中后, ……此处隐藏31588个字……函数y=ax在(-∞, +∞)上单调递增;

当0

⑥函数y=ax与y=()x (a>0且a≠1)图象关于y轴对称.

⑦指数函数y=ax与y=bx(a>b)的图象有如下关系:

x∈(-∞, 0)时,y=ax图象在y=bx图象下方;

x=0时,两图象相交;

x∈(0,+∞)时,y=ax图象在y=bx图象上方.

[意图分析]通过探究活动,使学生获得对指数函数图象的直观认识.学生观察图象,是对图形语言的理解;根据图象描述性质,是将图形语言转化为符号或文字语言.对函数的理解,是建立在三种语言相互转化的基础上的.在交流汇报过程中,一方面要通过对探究较深入学生的具体研究过程的剖析,总结提升学习方法,优化学习策略;另一方面要关注部分探究意识与能力都薄弱的学生的表现,鼓励他们大胆发言,激励他们主动参与活动,让全体学生成为真正的学习主体.自主探究活动能充分激发学生的相互学习能力,能有效帮助学生突破难点.

3.新知运用巩固深化

(方案一)(分析函数性质的用途)

师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?

师:函数的定义域是函数的基础,是运用性质的前提.值域是研究函数最值的前提.具备奇偶性的函数,可以利用对称性简化研究.指数函数过定点(0, 1),说明可以将常数1转化为指数式,即1=20=30=…那么函数单调性有什么用呢?

生:可以求最值,可以比较两个函数值的大小.

师:那你能举出运用指数函数单调性比大小的例子吗?(提示:既然是运用指数函数单调性,那应该有指数式.)

生:(举例并判断大小.)

师:你考察了哪个指数函数?怎么想到的?(规范表述)

师:以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.(出示例1)

(方案二)

师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?

师:(口述并板书)你能比较32与33的大小吗?

生:直接计算比较.

师:那比较30.2与30.3的大小呢?能不能不计算呢?

生:利用函数y=3x的单调性.

师:能具体说明吗?(引导学生规范表达)我们再试一试.

(出示例1)

【例1】比较下列各组数中两个值的大小:

①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.

[设计意图] 引导学生运用指数函数性质.对于 32与33的大小比较,学生更可能计算出幂的值直接比较.变式后,学生可能作差或作商比较,转化为比较30.1与1的大小,进而运用指数函数单调性,也可能直接运用单调性.初步运用新知解决问题,注重题意理解,扩大知识迁移,感悟解题方法,达到对新知巩固记忆,加深理解.

[师生活动]学生板演,教师组织学生点评.

[教学预设] ①②两题,学生能运用指数函数单调性解决.②题学生可能得到错误答案,教师可组织相互点评,规范表达,正确运用性质.③学生可能运用不同方法,应给予充分的时间,并在具体问题解决后引导学生总结一般方法.

师:(引导学生规范表达)你考察了哪个指数函数?根据函数的什么性质?

师:(对③的引导)你考虑利用哪个函数?是y=1.5x还是y=0.8x?这两个函数有什么关联?(引导学生画出图象,从形上提示:图象有什么关联?)

生:它们都过点(0, 1).

师:也就是说,可以将1转化为指数形式,即1=1.50=0.80.那接下来呢?

生:比较1.50.3,0.81.2和1的大小.

师:我们找到了一个比大小的中间量.以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.

【例2】

①已知3x≥30.5,求实数x的取值范围;

②已知0.2x<25,求实数x的取值范围.

[设计意图]指数函数单调性的逆用,同时考查指数函数的定义域.

4.概括知识总结方法

〖问题4本节课我们学习了哪些知识?你还学会了哪些方法?

[设计意图] 回顾所学内容,深化认知.开放式小结,不同学生有不同的收获.

[师生活动]学生发言总结,交流所得.

[教学预设]

通过本节课对指数函数图象和性质的研究,我们获得了以下知识和方法:

①指数函数的定义与性质;

②研究函数的一般方法和步骤.

师:本节课我们学习了什么知识?

生:指数函数的定义和性质.

师:回顾我们的研究过程,我们是怎样研究指数函数的?

生:先确定研究的内容:定义域、值域、单调性、奇偶性和其它性质.

生:然后从几个具体的指数函数开始,画出图象,列出性质,最后得到一般情况.

师:这是一种从特殊到一般的研究方法.研究指数函数的方法,也是研究函数的一般方法,今后我们还会运用这样的方法研究新的函数.

[意图分析]课堂总结不是对所学知识的简单回顾,应让学生在知识、方法和策略上多层次地整理,促进学生理解所用学习方法的合理性与普遍性,使学生获得知识与能力的共同进步.

5.分层作业,因材施教

(1)感受理解:课本第54页,习题2.2(2):1,2,3,4;

(2)思考运用:运用今天的研究方法,你还能得到指数函数的其它性质吗?

[设计意图]分层布置作业,“感受理解”面向全体学生,旨在掌握指数函数的图象与性质.“思考运用”提供学生运用函数研究的一般方法自主研究的机会.

Ⅵ.教后反思回顾

一、对于指数函数概念的认识

指数函数是一种函数模型,其基本特征是自变量在指数位置.底数取值范围有规定,使得这一模型形式简单又不失本质.不必纠结于“y=22x是否为指数函数”,把重点放在概念的合理性的理解以及体会模型思想.

二、对于培养学生思维习惯的考虑

在学生自主探索的过程中,教师应注意培养学生良好的思维习惯.实际上,选择底数a的数据的大小和数量,需要对指数函数的性质有预判;从列表到作图的过程中,都可以感受到指数函数单调性等性质;观察并归纳性质,既需要特殊到一般的推理模式,也应养成有序进行观察和归纳的良好的思维习惯.对所归纳的指数函数的性质,应根据学生已有的知识水平或教学要求进行证明或合理的说明.学生不仅学到了数学知识,也初步体验了研究问题的基本方法.

三、关于设计定位的反思

本节课的教学设计,力图体现因材施教原则。不同的学情下,教师应采用不同的教学策略.如果学生基础相对薄弱,问题的提出可以分层次进行。另外,注意通过“你是怎么想的?”“你同意他的意见吗?为什么”等问话形式,促使学生暴露思维过程.、

《高一数学教学计划(15篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式