当前位置:首页 > 教学文档 > 教学反思

《方程》的教学反思

时间:2023-12-18 17:04:07
《方程》的教学反思

《方程》的教学反思

作为一位刚到岗的教师,课堂教学是我们的工作之一,通过教学反思可以快速积累我们的教学经验,教学反思应该怎么写才好呢?以下是小编为大家收集的《方程》的教学反思,仅供参考,大家一起来看看吧。

《方程》的教学反思1

合理引导注重建模—六上第一单元《方程》教学反思六年级上册方程这个单元的核心知识点有这样几个:

一是利用等式性质1解形如ax±b=c的方程;

二是利用合并同类项的方式解形如ax±bx=c的方程;

三是能够通过读题、读图、读表的方式找到数量之间的关系。

一、有关直接设句和间接设句

在教学过程中,根据本班孩子的实际情况,对“问题解决”的过程进行了针对性训练,具体地说:在做题目时候要有读题分析的过程,要能主动找到数量之间的关系,并且列出方程。根据解方程的一般步骤,设句分为直接设句和间接设句两种不同的方式。

直接设句:所谓问什么设什么,这是这个单元出现比较多的一种情况,并且在一定时候会出现类似这样的设法:“解:设……为x千克,则……为5x千克”,这种设法是依据题目中的数量关系式来决定的,这在前一篇博文中已经叙述。

间接设句:你要求的问题不方便直接设,需要从中搭起一座桥梁,起到问题解决的目的。在练习册p7第十题分析讲解的时候我提到了这个,原因是我们可以先求出第二套运输方案需要几辆卡车,再求增加多少卡车。因而设的是第二套运输方案需要x辆卡车,根据数量关系式总数不变得到10*12=8x,在解出x之后在减去10辆得到最后确定的数值。

对于间接设句的问题,我以为这不是一种解法而是一种思路,目的就是在于帮助学生理解很多时候走直接设句这条路是走不通的,尤其是一些相对较好学校的分班考试试题,用间接设是很好做的。

二、有关移项的问题

移项是初一上学期一元一次方程的内容,实际上在小学中两个等式性质就是为了这个做准备,对于这个知识点到底讲不讲我是比较纠结的,后来考虑到,有些孩子列出了类似2x-56=x+26的方程,这样的数量关系孩子很清晰,但是方程不会解,这样在应试中丢分是很不值的,当然学校里不讲,外面培训机构是讲的,这样又在一定程度上导致了教育资源的不公平。

虽说这样理解有些扯远了,但是教育部提出的零起点教学是有道理的,所以在处理这个问题的时候我还是讲了移项的方法:“含有未知数的项放在一边(通常是左边也有特殊的,特殊的我没有出现),移项前后要变号,原来是加要变成减,原来是乘要变成除法”,并且我进行了针对性的训练,从目前的情况来说,班级还是有孩子掌握的,对那些好孩子还是有较大帮助的。

另外感觉,练习与测试的难度比原来的评价手册降低了不少,这样的变化我不知道道理是什么,但是我感觉给孩子的训练量和难度上确实降低了不少。

三、有关模型建立的问题

东北师大史宁中教授在新课程标准修订的时候曾经讲过,小学数学基本上是集中模型,“速度×时间=路程”……,这是我记得的,但是在本单元的学习中,出现了两种比较特殊的模型,为了表述清楚,将之命名为“速度和模型”、“速度差模型”,具体说:速度和模型指的是形如:(□+□)×□,先求和再求积;速度差模型指的是形如:(□-□)×□,先求差再求积。

具体地说,这与孩子已经学过的,求两个部分量的和和求两个不分量的差,实际上是一个使用乘法分配律的过程,所不同的是孩子要能体会第一步先求和和先求差的实际意义,因为有些意义是不大好说的,如,在书本p8的第十题和思考,数量关系式可以这样叙述:师傅徒弟每天的相差数×天数=师傅徒弟相差的总数;红球白球每次的相差数×次数=白球红球相差的总数(也就是10个球)。

当然每一个孩子的理解程度不可同日而语,所以我们允许有差异,孩子选择一个量减去另一个量的数量关系去做也是可以的。

对于方程方法和算术方法而言,有一些题目的解法过程,用算术方法是比较简洁的,但是这个单元学习的是方程,所以我们在做题的时候也是需要用方程做的,但值得提醒的是:有些问题没明确方法,是可以用算术方法做的。

附:

本班级孩子常犯的错误:

1、解方程和在做不用写“解:设”的求x的值时,经常忘记写“解”;

2、孩子的计算成问题,主要体现在不喜欢打竖式,错误重灾区在隔位退位减(如121-89=)、除数是小数的除法(如:0.6÷0.12=)

3、作业速度过慢,部分同学的写字速度让我几乎抓狂。

《方程》的教学反思2

在进行《直线的方程》一章教学时,笔者遇到了这样一个问题:就是我们反复在讲直线方程的5种形式,包括点斜式、斜截式、两点式、截距式和一般式,但是到了学生那里,只要求到直线方程,则十有八九是利用斜截式,即设直线的方程为y = kx + b,然后根据题目的已知条件求出相应的k和b.学生这样做固然也能把直线的方程求出来,但对于有些问题而言显然不是最好的方法.虽然在课上也强调对于不同的条件,要合理选择相应类型的直线方程,以简化计算,但是还有相当部分学生老是抱着斜截式不放.

我在想,是什么原因导致学生始终也摆脱不了这种“k、b情结”呢?原来,学生在初中阶段已经学过一次函数,当初一次函数的解析式的形式就是y = kx + b.我并没有贬低初中老师的意思,相反,我真的太佩服我们的初中老师了,在他们的辛勤耕耘下,我们的学生都成了一个个“训练有素”的解题高手,只要求到直线的方程,想也不要想,设为y = kx + b.殊不知,如今行情已经变了,需要“与时俱进”一下了.

由此,我们就得出了这样一个结论,教学中间的很多东西需要强调,但有时候强调得过了头,反而会适得其反,还是那句老话:过犹不及!就像一次函数的解析式,初中老师强调得过了头,我们高中老师在教《直线的方程》这一部分时就看出后遗症了.这么一强调,学生的中考成绩是有保证了,但是思维严重僵化,不懂变通,不愿接受新知识,当然更不用谈什么创新了.大概中国基础教育缺乏对学生创新能力的培养,由此也可窥见一斑吧. 另外,要解决上面的问题,我认为在教学时还要补充讲一个东西,那就是函数图像及其解析式和曲线及其方程之间的联系与区别.初中讲直线,是将其视为一次函数,它的解析式是y = kx + b,图像是一条直线;高中讲直线,是将其视为一条平面曲线(更确切地讲是点的轨迹),它的方程是二元一次方程,而y = kx + b只是直线方程的一种形式.作为函数解析式的y = kx + b,x是自变量,y是因变量,只有当自变量x的值取定,因变量y的值才能确定,它们的地位是“不平等”的.而作为直线方程的y = kx + b,x和y是直线上动点的横坐标和纵坐标,它们的地位是平等的.函数的解析式一定可以转化为曲线的方程,但曲线的方程却不一定能够转化为函 ……此处隐藏7042个字……生的需要出发,关注学生的认识和认同,为学生有效的自主建构提供时间和空间。选择合理的问题情境,有助于学生自主学习和自主建构,这也是新课程的价值追求。

本节课创设用“天平称量食盐的质量”这一情境引入课题比较合适,因为从天平的平衡学生可以直接获得相等关系,直观、形象、易懂。在有效地激发学生兴趣的同时,又揭示了方程是表达数量之间相等关系的天平。方程是解决实际问题的有效工具。从而引入课题:从问题到方程。

2.课堂活动的设计要有多样性、层次性

本节课三个活动层次分明,安排的三个活动环环相扣,既相互独立又自然形成一个整体。活动一用数学语言诠释天平平衡的道理,使学生初步体会到方程可以描述天平所表示的数量之间的相等关系;

活动二使学生体会到运用方程来表示实际问题中相等关系的一般性和优越性;活动三从不同的角度去分析问题,解决问题,进一步提升从问题到方程的认识,从而完成整个建构活动。

3.教材的使用要有创造性

对课本素材的充分利用,即每一个活动都是在课本所提供的基础上,或挖掘内涵,或利用变式,或改变题型,体现了数学课程标准中创新使用教材的要求。同时这样的设计,也使得每一个“活动”中的问题之间具有了一定的“逻辑联系”,这就使得解决问题的过程成为一个动态的、连续的过程,可以给学生留下长久的回味和对知识的深刻理解,从而有利于学生对知识的整体建构。

课堂教学是学生学习的主阵地,是学生认识数学、形成能力的场所,也是学生成长的舞台。教学设计要为学生的发展服务,以生为本,关注学生在学习过程中体验和认识,学会设计建构性活动,提升学生的认知水平和数学化水平,防止用简单的解题训练,替代数学化认识。教学应以学生为主线,关注学生的数学化认识,体现直接经验形成所经历的认知过程,变简单传授为理解而教。

《方程》的教学反思13

今天教学内容是探索与实践,主要要求学生掌握用方程解决简单的实际问题的基本方法后,进行探索与实践的,第5题,学生能熟练地根据关键的句子“比海洋面积少2.1亿平方千米。”写出数量关系式。列出正确的方程:x—2.1=1.5或x—1.5=2.1。第6题: 3 x=2.34;第7题: 0.52 x=23.4教师追问:你是根据什么等量关系列出方程的?在解方程时要注意什么?(步骤、格式、检验)。使学生体会列方程解决实际简单问题特点。通过追问,强化列方程的关键和解方程的步骤、格式、检验,为以后六年级学习方程知识提供强烈的数感,增强成功感。

第13页第8题;学生审题,理解题意。表中的a、b、c表示连续的3个自然数。任意写出三组这样的数,并求出各组数的和。先让学生理解连续自然数的含义。在表格中提供不同的连续自然数,体会中间数就是三个数的平均数规律,让学生体现探索知识带来的快乐,从而提高探索、应用能力。增强实际运用能力。

第13页第 9 题。(1)学生在小组中讨论方法 教师巡视。(2)教师提示:先把天平的两边都去掉两个苹果。得出:

1个梨=3个苹果。再根据右边的图得出:3个苹果=6个弥猴桃=1个梨

把这一实践题提升到更高一层次,发展学生思维。通过交流解题思路,体会实践课带来的乐趣。让学生感受所学的知识解决现实存在问题。

让学生思考解决简单实际问题和实践,在学生的思考中内化,难点被突破了,整节课,结构合理、张弛有度,学生学得有兴趣,教学效果良好。

《方程》的教学反思14

一、学生接受情况的方面

课本中从提出问题来看,这是一道比较难理解的应用题,怎么去降低难度让学生易理解,从我的分步设计中,大多数学生还是能接受的。问题是怎么去建立等量关系学生不知怎么办,这也找等量关系的难点,因此教会学生认真的研究题目中包含的信息是关键,其中的“匀速行驶”就暗示着汽车的速度不变就有等量关系。在教学要强调怎么从题目中哪些话有包含等量关系尤为重要。因为是第一课时,不能过急,只有做了一定量的题目才能慢慢的体会。

在例题1的教学中,教师可以用文字的的形式表达出等量关系,比如第(1)个问题表达为: 周长=24;第(2)个问题表达为:已使用时间+新增加时间=2450等。

这样能让学生慢慢的接受,久了就能达到潜移默化的作用。

二、教师的教案设计方面

一个好的教案既让教师教的轻松有能让学生容易掌握,能达到一箭双雕,因此要让教师工作快乐,好好研究怎么设计教材教学非常重要,一般来说数学教材是不会有很大的变动的,备好一堂课可以终身享用,所以每一次都要把课好,练习设计好,对自己是来说会有很大提高,在本堂课件中,我收集了各方面的材料和意见进行了加工,可以上起来比较顺手。效果也不错。

三、不足的方面

对学生有过高的估计,对较难的问题也不放心,总是担心学生不会,在学生做题时总是在不断的提示,干扰了学生的思路,这方面以后要纠正。

《方程》的教学反思15

直线方程的教学是在学习了直线的倾斜角和斜率公式之后推导引入直线的点斜式方程,进一步延伸出其他形式的直线方程和相互转化,为下面直线方程的应用如中点公式、距离公式、直线和圆的位置关系等打下良好的基础。

以下是在课堂教学中的几点体会和建议:

(一)初步培养了学生平面解析几何的思想和一般方法。

在初中,学生熟知一次函数y=kx+b(也可以看成是二次方程)的图象是一条直线,但反过来任意画一条,要同学们写出方程表达式,学生刚开始会无从下手,从而激发学生学习的兴趣。随着教学的展开,让学生逐步形成平面解析几何的方法,如建立坐标啊,设点啊,建立关系式啊,得出方程啊等等,初步培养学生的平面解析几何思维,为后面学习圆、椭圆和相关圆锥曲线打下良好的基础。

(二)在教学中贯彻“精讲多练”的教学改革探索。

我们都知道,对于职中的学生,基础差,底子薄,理解能力差,动手能力差,要想让学生学有所得,最好的办法就是精讲多练,提高学生的动手能力。因此在教学中,我们通常是由练习引入,简单讲讲,一例一练,配以一定的巩固提高题,最后还有配套作业,做到每个内容经过三轮的练习,让学生能够很容易的掌握。

(三)注意数形结合的教学。

解析几何的特点就是形数结合,而形数结合的思想是一种重要的数学思想,是教学大纲中要求学生学习的内容之一,所以在教学中要注意这种数学思想的教学。每一种直线方程的讲解都进行画图演示,让学生对每一种直线方程所需的条件根深蒂固,如点斜式一定要点和斜率;斜截式一定要斜率和在y轴上的截距;截距式一定要两个坐标轴上的截距等等。并在直线方程的相互转化过程中也配以图形(请参考一般方程的课件)

(四)注重直线方程的承前启后的作用。

教材承接了初中函数的图像之后,并作为研究曲线(圆、圆锥曲线)之前,以之来介绍平面解析几何的思想和一般方法,可见本节内容所处的重要地位,学好直线对以后的学习尤为重要。事实上,教材在研究了直线的方程和讨论了直线的几何性质后,紧接着就以直线方程为基础,进一步讨论曲线与方程的一般概念。

《《方程》的教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式